USN

Third Semester B.E. Degree Examination, June 2012

Logic Design

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Simplify the following Boolean expressions using K-map:
 - i) $f(A, B, C) = \sum m(0, 2, 3, 5, 6) + d(4, 7).$
 - ii) $f(W, X, Y, Z) = \sum m(0, 1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 15).$ (08 Marks)
 - b. Simplify and realize using NAND gates only: $f(A, B, C) = \sum m(2, 3, 5, 7)$. (04 Marks)
 - c. Simplify using Quine Mc Clusky tabulation method

$$f(a, b, c, d) = \sum m(1, 2, 8, 9, 10, 12, 13, 14) + d(15).$$
 (08 Marks)

- 2 a. What is multiplexer? Construct 8:1 Mux using 2:1 Mux's. (04 Marks)
 - b. What is decoder? Realize the following Boolean function using 3: 8 decoder and OR gate. $f(a, b, c) = \sum m(1, 2, 5, 7)$. (04 Marks)
 - c. What is magnitude comparator? Design one bit magnitude comparator using basic gates. (06 Marks)
 - d. Implement following Boolean functions using $3 \times 4 \times 2$ PLA.

$$\begin{split} f_1 \ (a, \, b, \, c) &= \sum \!\! m \, (0, \, 1, \, 3, \, 4) \\ f_2 \ (a, \, b, \, c) &= \sum \!\! m \, (1, \, 2, \, 3, \, 4, \, 5) \end{split}$$

(06 Marks)

- 3 a. Show the 8 bit addition of these decimal numbers in 2's compliment representation.
 - i) +83, +16
 - ii) +125, -68
 - iii) +37, -115
 - iv) -43, -78
 - v) -28, +15. (10 Marks)
 - b. Design 4 bit parallel adder/subtractor using full adders. (10 Marks)
- 4 a. What is monostable multivibrator? Illustrate with an example. (04 Marks)
 - b. Explain JK flip-flop operation along with state diagram. (06 Marks)
 - c. Write verilog/VHDL code for 'D' flip-flop. (04 Marks)
 - d. Convert RS flip-flop into JK flip-flop. (06 Marks)

PART - B

- 5 a. What is shift register? Explain with the suitable diagram and wave forms 4 bit Johnson and ring counters. (10 Marks)
 - b. Design a self correcting mod-5 counter using JK flip-flops and all the unused states leads to state, Q_A , Q_B , $Q_C = 000$. (10 Marks)
- 6 a. Obtain reduced state table and state diagram for the state table given below using implication table method: (10 Marks)

PS	NS		O/P	
	x = 0	x = 1	$\mathbf{x} = 0$	x = 1
Α	A	В	0	0
В	D	С	0	1
С	F	Е	0	0
D	D	F	0	0
Е	В	G	0	0
F	G	С	0	1
G	A	F	0	0

b. Design clocked sequential circuit for the state diagram given below Fig.Q.6(b), using JK flip-flop's. (10 Marks)

Fig.Q.6(b)

- 7 a. Draw a 4 bit D/A converter using R/2 R resistors and explain the working. (10 Marks)
 - b. Explain continuous A/D conversion with an example. (10 Marks)
- 8 a. Explain with neat diagram, CMOS inverter. (06 Marks)
 - b. Explain methods for interfacing CMOS device to TTL devices. (10 Marks)
 - c. What is MOSFET? Explain its working. (04 Marks)

* * * * *